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Land surface temperature (LST) is an important parameter in many ecological studies. The current Root Mean
Square Error (RMSE) in standard MODIS and ASTER LST products is greater than 1 K, and for ASTER can be as
large as 4 K for graybody pixels such as vegetation. Errors of 3 to 8 K have been observed for ASTER in humid
conditions,making knowledge of atmosphericwater vapor content critical in retrieving accurate LST. For this rea-
son improved accuracy in LST measurements through the synthesis of visible-to-shortwave-infrared (VSWIR)
derived water vapor maps and Thermal-Infrared (TIR) data is one goal of the Hyperspectral Infrared Imager, or
HyspIRI, mission. The 2011 ER-2 Delano/Lost Hills flights acquired data with both the MODIS/ASTER Simulator
(MASTER) and Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instruments flown concurrently. This
study compares LST retrieval accuracies from the standard JPL MASTER temperature products produced using
the temperature–emissivity separation (TES) algorithm, and the water vapor scaling (WVS) atmospheric
correction method proposed for HyspIRI. The two retrieval methods are run both with and without high spatial
resolution AVIRIS-derived water vapor maps to assess the improvement from VSWIR synthesis. We find
improvement using VSWIR derived water vapor maps, with the WVS method being most accurate overall. For
closed canopy agricultural vegetation we observed temperature retrieval RMSEs of 0.49 K and 0.70 K using the
WVS method on MASTER data with and without AVIRIS derived water vapor, respectively.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Kinetic temperature exerts a measurable effect on most physical
processes, and is explicitly used as an input to model both plant water
stress (Jackson, Idso, Reginato, & Pinter, 1981) and evapotranspiration
(Allen, Pereira, Raes, & Smith, 1998; Monteith et al., 1965). Water stress
and evapotranspiration are of particular interest to farmers in semiarid
drought prone regions such as California, where agricultural production
was valued at $44.7 billion in 2012 (CDFA, 2013). A 32.5%water delivery
reduction was predicted in the California Central Valley as a result of
2014 drought, which had an estimated total economic loss of $1.67 bil-
lion (Howitt, Medellin-Azuara, & Lund, 2014). The socioeconomic ef-
fects of the current drought are predicted to be 50% more severe than
those resulting from the 2009 drought. Reduced access towatermay re-
sult in higher cost for water, reduced yields from existing fields, and
abandonment (Howitt et al., 2014). Accurate modeling of temperature
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and evapotranspiration provides farmers with robust estimates of
water demand, enabling more conservative and efficient agricultural
water use that reduces the agricultural impact of drought.

Plant water stress in general limits photosynthetic activity, decreas-
ing growth and compromising yield (Kliewer, Freeman, & Hossom,
1983; Schultz & Matthews, 1988). For woody perennial crops—a group
that includes the two largest irrigated crops in California, vineyards
($4.45 billion, 2012) and almond orchards ($4.35 billion, 2012) (CDFA,
2013)—seasonal management of plant water stress is particularly cru-
cial for achieving themaximumyield with the desired quality. In grape-
vines, for example, the process from cluster differentiation to full
maturation covers two seasons, resulting in a yield loss due to water
stress that extends beyond a single season (Matthews & Anderson,
1989), and, in extreme cases, a requirement for redrafting or replanting.

The ability of vines to adapt to plant available soil water varies by
grape variety or rootstock-variety combinations. The term plant water
status refers not only to the plant water content but howwater content
impacts plant functioning. For correct irrigation scheduling that season-
ally modulates water status as desired, the crop evapotranspiration and
the plant water status need to be monitored in parallel.
e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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Leaf and stemwater potential are accepted as good indicators of plant
water status in orchards and vineyards (Escalona, Flexas, & Medrano,
2000; Flexas et al., 2004; McCutchan & Shackel, 1992) and both
parameters show good correlation with stomatal conductance—which
is itself the foremost mechanism of response to water stress in plants
(Hsiao, 1973). Plantwater demand and status change spatiallywith var-
iability within an orchard or vineyard, but irrigation is often scheduled
based on discrete measurements of plant water status at a few sites in
the orchard or vineyard, mainly leaf or stem water potential (Girona
et al., 2006; Shackel et al., 1997). These irrigation decisions can result
in substantial over irrigation of certain areas, and/or plant status
compromise in others.While discrete in situmeasurements are valuable
tools for farmers, the size and scope of agriculture—10.28 million hect-
ares and 80,500 farms in 2012 for California alone (CDFA, 2013)—un-
derscore the necessity for accurate regional scale remote sensing
measurements that can be used to assess evapotranspiration,water sta-
tus, and other parameters that support decision making for agricultural
practices.

The accuracy of remote sensing temperature measurements is of
particular importance in assessing water stress and evapotranspiration
(Anderson et al., 2008). Since leaf stomatal closure results in an increase
of leaf temperature, the temperature gradient (dT) between leaf surface
and the surrounding air serves as a good indicator of vine water stress.
The temperature gradient between the air and leaves can be less than
1 K for vegetation in semiarid ecosystems (Jarvis & McNaughton,
1986), however, current remotely sensed Land Surface Temperature
(LST) estimates typically have errors on the order of 1 Kwhen averaged
over rocks, soils, sands and graybodies (Hulley, Hughes, & Hook, 2012).
While the main driver of evapotranspiration is the vapor pressure
gradient between the leaves and the atmosphere, the saturation vapor
pressure which determines the gradient is itself temperature depen-
dent, and accurate temperature estimates are needed as input to
evapotranspiration models (Courault, Seguin, & Olioso, 2005). Errors
up to 4 K are typical for spectral graybodies such as vegetation
(Gustafson, Gillespie, & Yamada, 2006), due to uncertainty in emissivity
and errors in atmospheric correction from elevated moisture over large
contiguous vegetation patches. Even for targets with well known emis-
sivity such as water surfaces, errors as large as 3–8 K can occur under
humid conditions (Tonooka, 2005), and robust atmospheric correction
of thermal data is still essential in less humid Mediterranean climates
to provide accurate estimates of LST.

The development of smaller high qualitymultiband thermal imagers
and hyperspectral sensors has made it possible to acquire high spatial
resolution thermal and hyperspectral data in tandem from an aircraft
or a satellite. In this paper we evaluate two current thermal infrared
(TIR) temperature retrieval algorithms, and compare the temperature
retrievals with in situ measurements of leaf temperature. In particular,
we investigate leveraging hyperspectral data to estimate per-pixel at-
mospheric water vapor and improve the atmospheric correction of
paired thermal data. More specifically, we paired Airborne Visible-
InfraRed Imaging Spectrometer (AVIRIS) and MODIS–ASTER Simulator
(MASTER) data to quantify potential improvements in temperature
retrieval accuracy for both the temperature–emissivity separation
(TES) algorithm and the water vapor scaling (WVS) method.

1.1. Theoretical background

Atmospheric correction of thermal data can be accomplished by a
number of methods, however all methods focus on solving the same
physical equation:

Lλ ¼ ϵλBλ Tsð Þ þ 1−ϵλð Þ � L↓λ
� � � τλ þ L↑λ ð1Þ

where Lλ is the at-sensor thermal radiance; ϵλ is anunknown emissivity;
Bλ(Ts) is the blackbody radiance at surface temperature Ts as given by
the Planck function Bλ(); Lλ↓ and Lλ

↑ are the downwelling and upwelling
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long wave radiance from the atmosphere; and τλ is the transmittance
from the ground to the sensor. The surface temperature Ts is the only
term that does not vary spectrally; the at-sensor radiance Lλ is the
data acquired by MASTER. The Lλ

↑ and Lλ
↓ terms are atmospheric emit-

tance terms that vary per pixel, and are determined by atmospheric
composition and state, as is per pixel transmittance to the sensor.

Estimating LST from remotely sensed data is challenging in part be-
cause the emissivity of a surface, which varies spectrally, is required to
invert the Planck function and retrieve LST (Zhengming & Dozier,
1989). Solving for emissivity and LST simultaneously results in an
underdetermined system of equations, with n observations being used
to solve for both a single temperature, and n emissivities (Realmuto,
1990). Errors in emissivity estimation directly affect temperature re-
trieval accuracy during the Planck inversion and additional errors are
added when correcting for downwelling atmospheric radiance that is
reflected off of the land surface. Current techniques such as the TES algo-
rithm (Gillespie et al., 1998), have sought to constrain the emissivity so-
lution space through the use of empirically established relationships
related to the Minimum–Maximum Difference (MMD) in emissivity
(Matsunaga, 1994), or other relatedmeasures of contrast in the emissiv-
ity spectrum. Unfortunately, these techniques are not effective over
graybody pixels with low ϵλ spectral contrast, such as vegetation, in
part due to residual effects of incomplete atmospheric correction. The
WVS technique attempts to minimize the effects of both these atmo-
spheric residuals and sensor noise by using an estimate of water vapor
and sensor simulation data to scale the Lλ

↓, Lλ↑ and τλ terms.
While well mixed atmospheric gasses such as CO2 and O3 can be

estimated and corrected using regional estimates or model data from
the National Center for Environmental Prediction (NCEP), significant
challenges remain in correcting thermal imagery to account for column
water vapor, an atmospheric constituent that varies temporally and
spatially and is not well mixed (Gao & Goetz, 1990). One solution to ac-
count for this variability is to invert for columnwater vapor by compar-
ing measured radiance to modeled radiance using radiative transfer
code such as MODTRAN (Berk, Bernstein, & Robertson, 1987; Berk
et al., 1998, 2005) while allowing water vapor to vary on a per-pixel
basis (Green, Conel, & Roberts, 1993). Direct physical inversion for
water vapor in the Thermal-InfraRed (TIR) portion of the spectrum is
complicated both by the multisource nature of TIR emissions, and by
low signal to noise ratios within the TIR; hence broadband sensors
that include TIR channels such as the MODerate Resolution Imaging
Spectrometer (MODIS) typically utilize the higher signal to noise ratios
and single source nature of the Visible Short Wave InfraRed (VSWIR)
channels to solve for total column water vapor. Since water absorption
features within spectra are defined by their depth, width, and shape
(Carrère & Conel, 1993), high spectral resolution sensors such as the
hyperspectral AirborneVisible/InfraRed Imaging Spectrometer (AVIRIS)
are better able to retrieve total column water vapor relative to broad-
band sensors such as the MODIS–ASTER Simulator (MASTER), which
appears to underestimate total column water vapor (Roberts,
Quattrochi, Hulley, Hook, & Green, 2012; Scheele, Rill, Grigsby, &
Ustin, 2013). Given that uncertainty of column water vapor dominates
as a source of atmospheric error when retrieving temperature from re-
motely sensed imagery (Hook, Myers, Thome, Fitzgerald, & Kahle,
2001), the fusion of broadband thermal imagery with shortwave
hyperspectral imagery opens synergistic opportunities for improving
temperature retrievals (Roberts et al., 2012).

1.2. Science objectives and relevance to HyspIRI

The National Research Council has recommended the HyspIRI mis-
sion. HyspIRI combines a 213-channel VSWIR imaging spectrometer
with an 8-channel TIR radiometer, and would enable global simulta-
neous acquisition and synergy of hyperspectral VSWIR and TIR data at
spatial resolutions comparable to Landsat (Roberts et al., 2012). In this
paper, we assess the capabilities of HyspIRI-like instrumentation in
e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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retrieving vegetation canopy temperature by comparing in situ leaf tem-
perature measurements with temperatures retrieved using only TIR
MASTER data, and temperatures retrieved using a synthesis of
MASTER and AVIRIS remote sensing data. Specifically, we compare tem-
perature estimates from the following five methods of temperature re-
trieval with in situ field data:

1. Single band inversion using AVIRIS derived water vapor to estimate
per pixel Lλ↓, Lλ↑ and τλ.

2. TES with Lλ
↓, Lλ↑ and τλ terms derived from user supplied atmospheric

terms, including a scene estimate of water vapor.
3. TES with per pixel Lλ↓, Lλ↑ and τλ terms supplied from AVIRIS derived

water vapor, as in the single band case.
4. WVS method applied with NCEP estimates of water vapor used to

scale Lλ
↓, Lλ↑ and τλ terms derived from NCEP atmospheric profiles.

5. WVS applied using AVIRIS derived per pixel water vapor to scale Lλ
↓,

Lλ
↑ and τλ terms generated from NCEP atmospheric profiles.

The WVS method was selected due to the increased accuracy that it
offers in humid conditions where large uncertainties usually exist
from remote sensing or model derived water vapor profiles (Hulley,
Veraverbeke, & Hook, 2014; Tonooka, 2005), and also because it is the
candidate algorithm for temperature retrievals for the future HyspIRI
mission. TESwas selected since it is the current temperature retrieval al-
gorithm in use for ASTER and MODIS; the MASTER-TES algorithm runs
as a submodule to the WVS method, and comparison between the two
showcases expected improvements between the two methods. Single
band inversion is the closest approximation to an unmodified applica-
tion of Eq. (1), and is used as a control between improvements in emis-
sivity retrieval versus improvements in atmospheric correction. The
differences in the Fields Of View (FOVs) in the broadband TIR radiome-
ter and SWIR spectrometer on HyspIRI will result in significant portions
of the larger TIR swath that are not imaged by the VSWIR spectrometer;
comparison of methods using NCEP and per pixel water vapor allows
quantification of gains in temperature retrieval accuracy that can be
expected within the overlapping scan area.

These comparisons allow us to quantify the improvement that
hyperspectral data bring to TIR temperature retrievals. They also
provide insight into the magnitude and potential sources of remaining
uncertainty in temperature retrievals. We validate and assess LST re-
trieval accuracy using in situ measurements. Accuracy assessment of
temperature retrievals is important to know what physical processes
Fig. 1. Field site at Delano Vineyards. Yellow triangles show locations of towers; numbered glyp
vine 8 (‘ ’) was sampled only during the afternoon; all other data vines were sampled at both
samples. The highway at the right of the image is California State Route 99 (SR 99).
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we are able to model, as well as what new phenomena we will be able
to explore using HyspIRI-like sensors.

2. Materials and methods

2.1. Study area

Our study is focused on a 15 hectare (ha) production agriculture site
in the San Joaquin Valley ownedbyDelanoVineyards. The vineyardpro-
duces Crimson seedless table grapes, and was split into two 7.5 ha
blocks (North and South) that received two different watering regimes
as part of a research study investigating the detection of vine water sta-
tus using remote sensing (Alsina et al., 2013). Starting on April 8th 2011,
and continuing throughout the growing season, the North block was
fully irrigated to cover vine water demand while the South block had
irrigation completely stopped 10 days prior to data collection, which
produced a range of canopy temperatures and plant water physiologic
status. The availability of remote sensing data over this site, combined
with the range of vegetation conditions, closed canopies, and presence
of both in situ instrumentation and sampling were the primary factors
that led us to select Delano Vineyards for this study.

2.2. Remote sensing data

As part of a larger experiment investigating canopy water content
(Cheng, Riaño, & Ustin, 2014; Cheng et al., 2013), a number of flight
lines over almond orchards and vineyards were flown throughout the
San Joaquin Valley in 2011with theMASTER and AVIRIS remote sensing
instruments.While theseflights includedmorning and afternoonflights
over Delano Vineyards, we selected only the Delano afternoon flight for
our remote sensing analysis because the data were acquired closer in
time to our in situ sampling data. The NASA ER2 passed over our field
site at Delano Vineyards at 15:01 local time (PST; 22:01 UTC) on May
20th 2011 at an altitude of 8.3 km carrying both the AVIRIS and
MASTER instruments. The orthorectified and overlaid images in Fig. 2
show the result of both the different sensor swath widths (FOVs) and
spatial resolutions (IFOVs). The flight speed resulted in an oversampled
area of interest, leading to higher effective spatial resolutions compared
to the instrument IFOVs—6.9 m for AVIRIS and 13.1 m for MASTER. We
found the MASTER georeferenced product to be highly spatially accu-
rate over our field site, with the corners of the north and south data
blocks in the MASTER imagery aligned to ground sampled GPS points
hs indicate data vines that were sampled. Vine 26 (‘ ’) was sampled only during predawn;
times. Vine glyphs are colored green for north block samples and orange for south block

e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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Fig. 2.MASTER and AVIRIS flight lines; yellow box is the field site shown in Fig. 1. MASTER bands: Red = 9, green = 5, blue = 3; AVIRIS bands: red = 29, green = 20, blue = 11.
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with subpixel accuracy and not in need of further spatial correction or
georegistration.

2.2.1. AVIRIS water vapor retrieval
We retrieved precipitable column water vapor for the AVIRIS flight

line using the ACORN atmospheric correction software run in mode
1.5 with a tropical atmosphere profile. The tropical atmosphere profile
was used in ACORN because the starting surface temperature of this
profile more closely matched the surface temperature of the in situ
data, and the atmospheric conditions of the heavily irrigated Central
Valley in May are better approximated by the tropical profile in
MODTRAN than by the mid-latitude summer profile. Additionally, the
mid-latitude summer profile was prone to saturate water vapor esti-
mates over moist pixels due to the lower saturation vapor pressure
that this cooler temperature profile provides. Liquid water within the
canopy was also simultaneously retrieved in ACORN to avoid overesti-
mation of water vapor from mixing of the adjacent liquid and vapor
water absorption features (Gao & Goetz, 1990). Both the 940 nm and
Please cite this article as: Grigsby, S.P., et al., Improved surface temperatur
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1140 nm water absorption features were used for the inversion, with
aerosol path scattered radiance included within the fit. ACORN opti-
mized visibility, the parameter that accounts for aerosols within
ACORN, to a value of 20 km from an initial estimate of 16 km provided
from the nearest airport in Bakersfield, CA.

Despite the higher spatial resolution of AVIRIS, higher accuracy
georegistration within the MASTER data product led us to use MASTER
as the authoritative basemap when coregistering the MASTER
and AVIRIS datasets. To register the datasets we first resized the
6.9 m pixels of the AVIRIS imagery and AVIRIS derived water vapor
map tomatch the larger 13.1mMASTER pixels using pixel aggregate re-
sampling. The resampled visible bands of AVIRIS were registered to the
visible bands of MASTER applying pixel offsets to translate the AVIRIS
image and align linear features present in the imagery. Specifically,
the resampled AVIRIS data were shifted 2 pixels east and one pixel
north in order to match the corners of the data blocks and align the
roads. These same pixel offsets found in the visible AVIRIS imagery
were used to translate and register theAVIRIS derivedwater vapormap.
e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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Fig. 3. MMD empirical regression for MASTER bands 43, 44, 47, 48, and 49.
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2.2.2. Thermal infrared data preprocessing
We selected five MASTER bands from the TIR for thermal tempera-

ture retrieval processing: bands 43 (8.62 μm), 44 (9.09 μm), 47
(10.64 μm), 48 (11.33 μm), and 49 (12.12 μm). These bands were
selected to best approximate the HyspIRI proposed bands centered at
8.63 μm, 9.07 μm, 10.53 μm, 11.33 μm, and 12.05 μm. Although
MASTER band 42 (8.18 μm) approximates the proposed 8.28 μm
HyspIRI band, we excluded this band in our processing due to potential
methane contamination, an atmospheric component that was not
explicitly modeled in this study. Additionally, MASTER band 41
(7.81 μm) was also excluded as it has little overlap with the HyspIRI
band at 7.35 μm. TheMASTER instrument's Spectral Response Functions
(SRFs), which were used to convolve MODTRAN modeled atmospheric
path radiance terms, were derived from empirical monochromator
measurements made prior to the data flights at NASA Ames on May
11th, 2011. Radiometrically corrected MASTER L1B data was used for
at sensor radiance.

2.2.3. Single band inversion
Temperature retrieval from thermal data consists of three broad

steps: 1) atmospheric correction of at sensor radiance to at ground
emitted radiance; 2) estimation of target emissivity; and 3) inversion
to physical temperature using estimated target emission and emissivity.
The single band inversion method follows an initial correction routine
similar to TES and WVS, but separates atmospheric correction error
from TES emissivity estimation error by bypassing the TES module
and prescribing an a priori fixed value of the maximum spectral
surface emissivity for one band. The maximum spectral graybody emis-
sivity of vegetation ranges from 0.97 to 0.99, and since our pixels are
smaller and less heterogeneous than either MODIS or ASTER, we set a
value of 0.99 formaximum spectral emissivity in the initial atmospheric
correction.

To correct sensor radiance to emitted ground radiance, we ran
MODTRAN to generate 42 different atmospheric models, varying pre-
cipitable water vapor from 1.00 to 1.82 g/cm2 in 0.02 g/cm2 increments.
The input parameters for MODTRAN runs were taken from the AVIRIS
atmospheric correction detailed in Section 2.2.1, with additional
atmospheric constituents estimated from NCEP as appropriate. Each
MODTRAN run yielded water vapor dependent values of Lλ↑, Lλ↓, and τλ
from 8 μm to 14 μm at a spectral resolution of 1 cm−1, which were
then convolved to theMASTER bands using theMay 11th SRFs provided
by NASA Ames. We fit univariate splines between the different water
vapor model runs to create forward Look Up Tables (LUTs) in the ther-
mal region, an approach that is a modification of Green, Conel,
Margolis, Bruegge, and Hoover's (1991) method to generate reverse
LUTs for atmospheric correction. Our LUTs thus mapped any given
amount of precipitable water vapor between 1.00 to 1.82 g/cm2 to
interpolated MODTRAN Lλ

↑, Lλ↓, and τλ terms convolved to the MASTER
instrument.

We processed the MASTER TIR data using the following equation:

Lλ−L↑λ
� �

=τλ
� �

− 0:01ð Þ � L↓λ ¼ 0:99 � Bλ Tsð Þ ð2Þ

where Eq. (2) is identical to Eq. (1), but assumes an initial value of
ϵλ = 0.99 for all bands. The Lλ

↑ , Lλ↓ , and τλ values per pixel were esti-
mated by looking up column water vapor from the corresponding
AVIRIS water vapor pixel described in Section 2.2.1, and retrieving
the corresponding Lλ↑ , Lλ↓ , and τλ values from the thermal LUTs. Taking
the per pixel hottest band as the closest to true surface temperature,
we calculated the relative emissivity for the other bands assuming a
physical temperature equal to the hottest band. The final per band
temperatures were estimated by using the same Lλ

↑ , Lλ↓ , and τλ values
per pixel applied to Eq. (1) with the calculated relative emissivities
applied to reduce error in the reflected Lλ

↓ component; the average of
the Planck inversion temperatures for all five bands yielded the
retrieved temperature.
Please cite this article as: Grigsby, S.P., et al., Improved surface temperatur
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2.2.4. Temperature and emissivity separation (TES)
The TES algorithm (Gillespie et al., 1998; Gustafson et al., 2006) uses

the procedure described in Section 2.2.3. To solve for the emissivity, an
empirical relationship is used that correlates spectral contrast between
a specific set of bands and the minimum emissivity, ϵmin, of laboratory
measured surface types as described in Baldridge, Hook, Grove, and
Rivera (2009) and Hulley and Hook (2009). The regression for
MASTER bands 43, 44, 47, 48, and 49 is shown in Fig. 3, as well as in
Eq. (3) below:

ϵmin ¼ 0:9921−0:74329 �MMD0:78522 ð3Þ

where MMD = Max(ϵλstand) − Min(ϵλstand).
Following an initial atmospheric correctionwith Eq. (2), we calculat-

ed the standardized emissivity (ϵλstand) by dividing the per pixel relative
emissivities from Section 2.2.3 by the pixel mean of those relative
emissivities. We calculated the MMD and ϵmin per pixel using Eq. (3),
and then used Eq. (4) to solve for calibrated emissivity (ϵλcal):

ϵcalλ ¼ ϵstandλ � ϵmin=min ϵstandλ

� �h i
ð4Þ

where min(ϵλstand) is the minimum standardized emissivity for a pixel
among all of the bands used for the correction. The ϵλcal was then used
with Eq. (1), and as in Section 2.2.3, the average temperature from
MASTER bands 43, 44, 47, 48, and 49 was considered the retrieved
temperature. In addition to using the per pixel estimates of Lλ↑, Lλ↓, and
τλ provided from the AVIRIS water vapor map, this procedure was
applied to generate the JPL standard product. The JPL standard product
is available for all MASTER flight lines and uses scene estimated Lλ

↑, Lλ↓,
and τλ derived fromMODTRANwith user supplied atmospheric param-
eters; we supplied matching parameters to the JPL standard product to
facilitate comparison.

2.2.5. Water vapor scaling (WVS)
To applyWVS to the Delano scenes, wemodified the base Lλ↑, Lλ↓, and

τλ terms of Eq. (1) using Eqs. (5), (6), and (7) respectively:

L0λ
↑ γð Þ ¼ L↑λ γ1ð Þ � 1−τ0λ γð Þ

1−τλ γ1ð Þ ð5Þ

L0λ
↓ γð Þ ¼ aλ þ bλ � L0λ↑ γð Þ þ cλ � L0λ↑ γð Þ2 ð6Þ

τ0λ γð Þ ¼ τλ γ1ð Þ

γaλ−γ
aλ
2ð Þ

γ
aλ
1

−γ
aλ
2

� �
� τλ γ2ð Þ

γ
aλ
1

−γaλð Þ
γ
aλ
1

−γ
aλ
2ð Þ ð7Þ
e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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where ‘γ1’ and ‘γ2’ are constants set to 0.7 and 1, and a, b, and c are the
regression coefficients; an atmospheric term (Lλ↑, Lλ↓, or τλ) as a function
of a subscripted γ1 or γ2 indicates the atmospheric term calculated
using an amount of precipitable water vapor scaled by the correspond-
ing constant. The band model parameter ‘αλ’ and apparent surface
brightness temperature ‘Tαλ ’ were determined using the Enhanced
MultiChannel Water Vapor Dependent (EMC/WVD) split-window
algorithm (Eqs. (8) and (9)) as described in Tonooka (2005) and
Hulley and Hook (2011):

αλ ¼ pλ þ qλW þ rλW
2 ð8Þ

Taλ ¼ αλ;0 þ
Xn
k¼1

αλ;kTk ð9Þ

where W is the precipitable water vapor in g/cm2; n is the number of
bands used in TES (n = 5); k is an assigned band number 1 through 5
for the corresponding band centered at wavelength λ; and p, q, and r
are the regression coefficients as determined by a global simulation
model using NCEP model data (Tonooka, 2001).

TheWVSmethod takes per-band brightness temperatures at a given
pixel calculated from Eq. (9), and an estimate of water vapor over that
pixel to generate band-dependent scaling factors to modify and scale
the Lλ

↑ , Lλ↓ , and τλ terms of Eq. (1) to the Lλ′↑(γ), Lλ′↓(γ), and τλ′(γ)
terms of Eqs. (5), (6), and (7). The per band and pixelWVS scaling factor
‘γ’ is calculated from thebandmodel parameter ‘αλ’ (Eq. (8)) and appar-
ent surface brightness temperatures ‘Tαλ ’ using Eq. (10):

γ ¼

ln
τλ γ2ð Þγ1

αλ

τλ γ1ð Þγ2
αλ

�
Bλ Taλð Þ−L↑λ γ1ð Þ

1−τλ γ1ð Þ
Lλ−L↑λ γ1ð Þ
1−τλ γ1ð Þ

0
@

1
A

γ1
αλ−γ2

αλ0
B@

1
CA

ln
τλ γ2ð Þ
τλ γ1ð Þ

� 	 : ð10Þ

The ‘γ’ WVS scaling factors were only computed over graybody
targets to minimize emissivity effects, and were then interpolated
over any bare pixels on the scene using an inverse distance weighting
interpolation. In contrast to the Lλ

↑ , Lλ↓ , and τλ values retrieved from
interpolated LUTs as described in Sections 2.2.4 and 2.2.3, and since
the estimates of Lλ↑, Lλ↓, and τλ are scaled by water vapor separately, we
used the same base Lλ

↑ , Lλ↓ , and τλ estimates derived from MODTRAN
run with NCEP inputs when deploying WVS.

These scaling factors were applied to both 1° water vapor estimates
provided by NCEP, and also to the 13.1 m resolution water vapor maps
that AVIRIS provided. Following the application of scaling factors using
Eqs. (5) through (10), temperature and emissivity were retrieved
using the TES method as described in the HyspIRI TES ATBD (Hulley,
2011).

2.3. Field data

Leaf water potential and gas exchange were measured on the flight
day both at predawn and throughout the data acquisition flight win-
dows, in six georeferenced vines per block (see Fig. 1) using a
Scholander chamber (Soilmoisture 3005, Soilmoisture Equipment
Corp., Santa Barbara, CA) and a LiCor 6400 (LiCor Inc., Lincoln, Nebraska,
USA) respectively. The LiCor instrument calculates the temperature
gradient between the ambient air and a sampled leaf as part of the gas
exchange analysis routine, using a fine wire thermocouple installed in
the chamber to measure and record leaf temperature while taking a
simultaneous measurement of the ambient air temperature. Two in-
strumented towers, one per block, were installed at the site to estimate
surface energy fluxes using the surface renewal technique (Castellv &
Snyder, 2010; PawU, Qiu, Su, Watanabe, & Brunet, 1995). These towers
recorded a number of variables, including air temperature by fine wire
Please cite this article as: Grigsby, S.P., et al., Improved surface temperatur
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thermocouple, at half hour intervals during the week preceding and
following the data flight.

Averaged measurements of leaf temperature provide a close em-
pirical measurement of directional vegetation kinetic temperature
(hereafter referred to as canopy temperature), and also approximate
the radiative temperature for the canopy that we expect at low ze-
nith angles given that the leaves are large, the canopy is closed, and
emissivity of leaves is known to be high (Norman, Chen, & Goel,
1990). Unfortunately, a mismatch of 1 to 1.5 h between the in situ
LiCor measurements and the closest flight line prevented us from
using these raw leaf temperature measurements as validation data.
The hour offset between the end of the LiCor measurements and
the data flight is present because stomatal conductance measure-
ments were taken coincident with the data flight and it was not fea-
sible to take LiCor measurements simultaneously; the half hour of
additional temporal variability is due to the time required to traverse
and sample both the North and South data blocks with the LiCor in-
strument. The differences in watering regimes between the North
and South blocks introduce a spatial temperature gradient which is
imposed on top of a diurnal temperature trend present over the
half hour sampling window. In order to separate the temporal and
spatial temperature trends present in the LiCor leaf temperature
measurements, and ultimately adjust leaf temperatures measure-
ments forward in time to match the acquisition time of the remote
sensing data, we modeled an aspatial diurnal temperature trend
using tower data measurements as described below.

2.3.1. Modeling diurnal temperature
To model the aspatial diurnal temperature trend, we used the

following equation:

K tð Þ ¼ A � cos W � tð Þ þ Sð Þ þM þ D � t−140ð Þð Þ ð11Þ

where A is the amplitude of the diurnal cycle (i.e., the range of the
min/max temperature values); W is a shape parameter that corre-
sponds to the width of the period; t is the time in decimal day of the
year; S is an offset shift that determines the alignment and timing of
the daily min/max temperature trough/peak;M is the mean daily tem-
perature (centered on day 140); D is a linear term for the daily temper-
ature trend; and K(t) is themodeled temperature in kelvin at time t. We
estimated the parameters for Eq. (11) using a non-linear-least-squares-
function (NLLSF) (Nelder & Mead, 1965) fit to data from the North
tower (Fig. 1). We selected tower data from three days (72-hours)
prior and one day (24 h) after the data flight as input to theNLLSFfitting
function; this range was chosen because it included four contiguous
days about the data that shared similar atmospheric conditions—clear,
low wind, and no clouds. The NLLSF function was also seeded with ini-
tial parameter guesses of the mean temperature, amplitude, and daily
temperature trend by taking themean of the dataset, the average differ-
ence between the min and max temperatures, and the best fit slope of
the dataset respectively.

Since the North Tower was positioned at the edge of the vineyard,
with an ambient air temperature sensor fixed 1m above the vegetation
canopy, the diurnal tower air temperature cycle was localized to awith-
in canopy diurnal air temperature cycle using the LiCor measurements.
The daily temperature trend D, and the timing of the daily minimum
and maximum temperature as controlled by parameters S and W were
assumed to be the same both within the canopy and at the North
tower; the mean daily temperature M and daily temperature range A
were known to not be the same from inspection of the LiCor predawn
and afternoonmeasurements. FixingD, S andW to the values calculated
from the towers, we reran the NLLSF on the predawn and afternoon
LiCor air temperature measurements to estimate values of M and A
appropriate to within the vegetation canopy.
e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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3. Results

3.1. Remote sensing results

Results from the ACORNwater vapor inversion using AVIRIS data are
shown on the top of Fig. 4. While there is likely some elevated water
vapor over crops due to active evapotranspiration compared to bare
soils, this effect is probably exaggerated in the ACORN retrieval by albe-
do differences between surface types. Despite these albedo artifacts, the
retrieved values are reasonable overall, and moving air masses are visi-
ble throughout the image over all surface types. These water vapor esti-
mates were used as described in Section 2.2.5 to generate the per band
‘γ’ factor inputs for theWVSmethod, and the calculated ‘γ’ factor inputs
provided by AVIRIS are shown in the bottom of Fig. 4 for a single exam-
ple MASTER band (band 44). Comparing the WVS ‘γ’ scaling factors to
water vapor shows similar spatial patterns, as expected. Values less
than 1 in the water vapor scaling factors indicate that water vapor
over the scene was overestimated by the NCEP data.

Water vapor estimates were used with each of the three retrieval
methods discussed in Sections 2.2.3, 2.2.4, and 2.2.5; the result of the
temperature retrievals is shown in Fig. 5. All three retrievals display
similar spatial patterns, and show the North/South temperature gradi-
ent present from the different watering regimes applied to the different
blocks. The temperature retrievals from TES and WVS that did not ac-
count for variable scene water vapor (omitted), showed similar spatial
patterns, with some subtle spatial smoothing and loss of fine detail.

3.2. Validation data

Validation of our remote sensing data utilizes both measured and
model results. While the measured leaf temperatures capture spatial
variability, the temporal variability captured by model results is used
to adjust leaf measurements to account for diurnal heating, as described
in Section 2.3.1. The input data and result of the fit used to estimate the
Fig. 4. (Top): AVIRIS derived water vapor; field site is denoted in purple box. (Bottom): WVS s
marks field validation site. The x-axis and y-axis coordinates are across track and along tract p

Please cite this article as: Grigsby, S.P., et al., Improved surface temperatur
vironment (2015), http://dx.doi.org/10.1016/j.rse.2015.05.019
mean daily temperature trend (D), and shape parameters (W and S) can
be seen in Fig. 6a. The amplitude (A) andmean temperature (M) param-
eters were localized within the canopy; the resulting parameter esti-
mates of Eq. (11) for canopy temperature can be seen in Fig. 6b. The
difference in slope between the model (blue line in Fig. 6b) and the
within canopy air temperature observations is due to the strong
North–South temperature gradient shown in Fig. 5 that matched the
in situ sampling direction; thus, the parameters from Fig. 6b were
used with Eq. (11) to estimate the aspatial (i.e., temporal) temperature
trend within the canopy. While tower data measurements only include
air temperature, and not leaf temperature, we found that the two
temperature measurements were highly correlated throughout the
sampling window and that air temperature can be used to predict leaf
temperature using a simple linear regression:

leafTemp ¼ 1:19 � AirTemp−57:19: ð12Þ

We established this linear regression (R2 = 0.81) using the air and
leaf temperatures from the LiCor instrument; since each pair of
measurements is collocated in both time and space, we believe the
relationship is robust across the spatial and temporal gradients. Using
this regression to estimate leaf (and canopy) temperatures at the time
of the data flight explicitly assumed that the leaf temperature to air
temperature relationship calculated using data collected from 1:30 pm
to 2 pm was still valid at 3 pm. Since there is no major shift in the
heating regime over this time as measured by the towers (rnet), and
since the time offset is never more than 90 min, we believe this to be
a sound assumption.

To capture the spatial variability in temperature within the data
blocks shown in Fig. 5, we calculated residuals between the in situmea-
surements of air temperature recorded by the LiCor instrument, and the
modeled air temperatures shown in Fig. 6b. These residuals were added
back to the modeled air temperature at the time of the data flight to
yield spatially explicit air temperature estimates at 3:01 pm PDT
caling factor for MASTER band 44 using AVIRIS derived water vapor estimate; purple '+'
ixel coordinates for the MASTER sensor.

e estimates with MASTER/AVIRIS sensor fusion, Remote Sensing of En-
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Fig. 5. Temperature retrievals at Delano Vineyards field site, units are kelvin. (Left): Constant emissivity (0.99). (Center): TES method. (Right): WVS+ TES method. All panels use AVIRIS
derived water vapor. The increasing trend of temperature from North-to-South is aligned with the North-to-South sampling order.
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(22:01 UTC). The regression in Eq. (12)was used to convert air temper-
aturewithin the canopy to leaf temperature; these adjustedmeasures of
leaf temperature shown in Fig. 7 represent our best estimate of canopy
temperature at the time of the data flights, and were used as indepen-
dent verification data in assessing our remote sensing temperature
retrievals.
3.3. TES evaluation

The accuracies of temperature retrievals from single-band inversion,
TES, and WVS—with and without AVIRIS derived water vapor—are
shown in Table 1 on the following page (). Although the TES + WVS
method replaced TES as the new JPL temperature and emissivity
standard product for all MASTER lines collected since 2013, we selected
the older JPL TES product as our baseline in comparing temperature
retrievals in Table 1 since the older TES method is available for all
MASTER scenes. Our results show that there is a strong tendency for
TES to overestimate surface canopy temperature as a consequence of
underestimating emissivity. The addition of AVIRIS derived water vapor
improved retrieval accuracy as expected, although still not to within a
kelvin of estimated canopy temperature.

The WVS method showed significant improvement over TES, both
with and without the addition of per pixel water vapor. For example,
residuals between measured (Corrected LiCor) and modeled LST for
the five approaches showed no significant bias for the Single Band,
Fig. 6. (a.) Diurnalmodel (red line) fit to North Tower data (crosses);model parameters asfit by
3.125. Yellow box is the time window for in situ LiCor measurements. (b.) Diurnal aspatial te
S=−1.570, andD=3.125 are fixed and taken from panel a;model parameters A=9.62, andM
the temporal trend only — LiCor data observations (crosses) encapsulate both a temporal tren
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WVS+NCEP andWVS+AVIRISWV retrievals,with residuals distribut-
ed evenly above and below the reference temperature. By comparison,
JPL standard TESwith andwithout AVIRIS-WVhad a negative bias in ex-
cess of 1 K (Table 1). Coarse scale NCEP water vapor data (1°) still
yielded errors well under a kelvin RMSE and had over 70% reduction
in error compared to the JPL product that WVS replaces. The addition
of AVIRIS water vapor to the WVS method produced further improve-
ments, reducing retrieval RMSE to less than 0.5 K.
4. Discussion

4.1. Spatial patterns

The dominant pattern of observed canopy temperature values in
Fig. 5 shows the effects of different watering regimes in the North and
South blocks. Additional fine scale spatial variability of temperature
within the field is likely the result of water pressure drops in the irriga-
tion line, differences in soil composition and water holding capacity,
and/or other plant physiologic stresses such as pest infestation, disease
or nutrient stress. The observed canopy temperature range at the
vineyard—up to 8 K between the North and South blocks, and over 5 K
within a single block—has substantial implications for productivity. Pre-
vious studies of woody vegetation have found that a difference of 7 to
8 K in canopy temperature corresponds to the difference between
peak photosynthesis and photosynthesis at 75% of peak (Larcher,
NLLSF (χred
2 =1.76) are as follows: A=6.565,W=6.264, S=−1.570,M=290.736,D=

mperature model (blue line) for canopy air temperature; model parameters W = 6.264,
= 297.605were determined by NLLSF fit to LiCor data. Themodeled blue line represents

d and the spatial trend shown in Fig. 5.
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Fig. 7. Black symbols are observations 1 to 1.5 h prior to data flight. Red symbols are tem-
peratures time adjusted to 15:01 PDT using Eq. (11) with the coefficients listed in Fig. 6b.
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1969). Since plants reduce fruit production when stressed, the reduc-
tion of gross photosynthesis has an outsized impact on harvest yield;
for the Delano field site there was a reduction in yield in terms of
berry size and cluster size in the south block compared to the fully
irrigated north block in the 2011 experiment.

4.2. Separation of atmospheric and ϵλ errors

Some insight into the major source of errors when applying the TES
andWVSmethods can be inferred from thehigh accuracy that the single
band inversion method achieves. In cases where the prescribed ϵλ is
close to the true emissivity, we can expect that the major source
of error will be from the atmospheric Lλ

↑ , Lλ↓ , and τλ terms. Since
both the single band inversion and the TES retrieval using AVIRIS
water vapor share identical per pixel values of Lλ↑, Lλ↓, and τλ—with the
TES temperature retrieval decreasing in accuracy after calibrating
emissivities—we can infer that the prescribed and constrained ϵλ values
in the single band inversion are closer to the true ϵλ than the calibrated
ϵλ values from TES. Furthermore, given the high overall accuracy of the
single band inversion, for TES we can infer that relatively small atmo-
spheric errors are propagating to much larger errors in emissivity (usu-
ally ϵλ underestimation). Hence, the higher temperature errors for TES
relative to the single band inversion ultimately result from errors in
the emissivity estimation, rather than atmospheric path radiance resid-
uals in the Planck inversion. It is worth noting that in addition to
outperforming TES in all cases, the single band inversion using AVIRIS
water vapor also outperformed the WVS method without water vapor.
Table 1
Comparison of temperature retrievals from remote sensing data with field validation data. RM
according to the number of observations occurring within the corresponding pixel. The JPL st
by NASA for ASTER, MODIS, and MASTER instruments, and is used as our baseline when comp

Corrected LiCor Single-band
inversion

Temperature–emis

Leaf temperature AVIRISWV JPL standard

Vine N Obs meantemp temp resids temp resid

48 3 308.46 309.06 −0.60 311.70 −3.2
21 2 309.52 309.25 0.27 311.19 −1.6
25 2 309.78 309.81 −0.03 311.34 −1.5
13 1 309.70 309.26 0.44 310.90 −1.2
16 1 310.88 312.45 −1.57 314.07 −3.1
10 2 311.24 312.15 −0.91 314.10 −2.8
8 2 311.73 312.19 −0.46 313.87 −2.1
1 1 311.98 312.24 −0.26 313.52 −1.5

N Obs weighted RMSE (K) 0.66 2.41
% error reduction 72.8% –
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As discussed in Section 2.2.5, the WVS method scales the Lλ
↑, Lλ↓, and

τλ terms before applying the same TES technique to estimate ϵλ. Given
the high accuracy of WVS without AVIRIS water vapor compared to
both TES temperature retrievals, and the similar accuracy compared to
the single band inversion, the primary mode of improvement for the
WVS method appears to be a reduction of emissivity errors—even
though this reduction is itself driven by the modification of Lλ↑, Lλ↓, and
τλ terms ahead of emissivity estimation. While the WVS method
without water vapor maps achieves a substantial reduction of error
relative to TES, the addition of AVIRIS derived water vapor still yields
an estimated 30% further reduction in relative temperature error.

4.3. Implications for the HyspIRI mission

We show improvements in temperature retrievals when synthesiz-
ing data from TIR and SWIR instruments, particularly using the WVS
method proposed by JPL. Comparison ofWVS applied with and without
hyperspectral derived water vapor showed a statistically significant im-
provement in LST compared to standard TES. However, the study area
was also small and further evaluation over a larger area and a greater
range in environmental conditions is needed to evaluate its potential
for HyspIRI.

Vegetated surfaces are typically challenging targets for emissivity in-
version, and accurate temperature retrieval of these surfaces bodeswell
for our ability to invert less challenging surfaces such as soils, rocks and
senesced plant material that have greater spectral contrast. Regardless
of surface type, the degree of improvement in temperature retrieval
with theWVS method is expected to scale, with greater improvements
in areas more humid than the Central Valley. Given that the majority of
water vapor occurs below the altitude of ourflight lines, and the similar-
ity of the MASTER instrument to the proposed HyspIRI instrument, it is
reasonable to expect similar canopy temperature accuracy fromHyspIRI
over closed canopies in areas like the Central Valley, with increasing
surface temperature retrieval accuracy for heterogenous non-graybody
pixels such as bare soil or exposed rock.

While the synthesis of hyperspectral derived water vapor and TIR
data will only be possible for the 150 km swath of the HyspIRI VSWIR
instrument (as opposed to the 600 km TIR radiometer swath), the tech-
nique remains a potentially powerful option to use over more complex
terrainwith a higher degree of spatial variability in columnwater vapor.
Flights with AVIRIS that simulate the swath width and pixel size of the
HyspIRI mission (and traverse both the Central Valley and the Sierra
Nevadas) show both regional air masses and significant terrain-
related variation in column water vapor that follows path length and
is inversely correlated with elevation (Thompson et al., in press, also
this issue). Since total precipitable water vapor is strongly correlated
with elevation, the relative improvements that we observed when
SE values are calculated relative to corrected LiCor field measurements, and are weighted
andard TES product is representative of the 1999–2013 operational retrievals performed
aring percent error reduction between temperature retrieval methods.

sivity separation Water vapor scaling

AVIRISWV NCEP AVIRISWV

s temp resids temp resids temp resids

4 310.14 −1.68 309.60 −1.14 308.97 −0.51
7 310.25 −0.73 309.76 −0.24 309.59 −0.07
6 310.83 −1.05 309.49 0.29 309.33 0.45
0 310.61 −0.91 309.51 0.19 309.29 0.41
9 314.05 −3.17 312.35 −1.47 312.28 −1.40
6 313.06 −1.82 311.65 −0.41 311.40 −0.16
4 313.44 −1.71 311.92 −0.19 311.80 −0.07
4 313.46 −1.48 312.03 −0.05 311.91 0.07

1.63 0.70 0.49
32.3% 71.1% 79.6%
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using AVIRIS derived water vapor in place of NCEP provided water
vapor are likely conservative for what we can expect in areas of greater
topographic variability than the Central Valley. In otherwords, although
we do not yet know the absolute temperature retrieval accuracy for all
atmospheric conditions or over complex terrain, a flat homogenous
area—such as our study site—under utilizes the potential benefit and
improvement of using spatially explicitwater vapor. Thus, at the region-
al scale, we would anticipate WVS with AVIRIS-derived water vapor to
be even more significant.

The improved temperature retrievals that we demonstrate using
WVS over graybody pixels are dominated by a reduction in propagated
error in estimating surface emissivity—a result that portends a future for
the HyspIRI mission focused on other, non-atmospheric challenges.
Chief among these challenges will likely be the scaling issues inherent
in estimating canopy scale physical phenomena using a 60 meter
HyspIRI pixel. Orchard cash crops such as almonds and pistachios
present a multisource emission target, as do pixels that cover multiple
adjacent plots—and all of which will require multimember definitions
of surface temperature to bemeaningful. Ultimately, further refinement
of temperature estimates will require modeling endmember fractions
and thermal unmixing of the surface cover that accounts for varying
endmember emissivity and temperature within a pixel. The HyspIRI
mission will be well equipped to accomplish the former using
established mixture analysis methods in the VSWIR, however the latter
will necessitate dealing with substantial nonlinearities present in TIR
mixing.

One potential approach for future studies that aim to tackle this
unmixing challenge is to modify the split-window approach. The split-
window approach pioneered by Dozier (1981) solves for endmember
fractions and temperature simultaneously, given known endmember
emissivities. Since hyperspectral measurements can provide accurate
fractional cover estimates, direct inversion of emissivity from WVS
corrected radiant emission and endmember fractions may be possible
within an error minimization framework that uses total at sensor
radiance as way to constrain the solution space.

5. Conclusion

Results of this study highlight our ability to correct for atmospheric
water vapor errors in the use of TIR to retrieve canopy temperature.
Plant canopy temperature is a plant physiological state variable that
controls gross photosynthesis by limiting or enhancing carbon uptake,
transpiration, and respiration. Retrieving canopy temperature at sub-
kelvin accuracy will allow farmers and scientists to assesswhen vegeta-
tion respiration is increasing faster than photosynthesis, quantify the
total hydrologic exchange with the atmosphere, and pinpoint heat
stress that directly reduces photosynthesis rates due to enzyme inacti-
vation. At the field scale, accurate canopy temperature measurements
are crucial to efficient water use in agriculture where transpiration
rates are used to assess water loss to the atmosphere; at regional spatial
scales, canopy temperature maps heat damage and forecasts yield re-
duction or failure in crops, and also provides insight into the respiration
rates of heterogenous natural biomes. Modeling vegetation as multi-
source emission targets of varying temperatures will likely yield further
improvements in canopy temperature estimation, especially for
heterogenous ecosystems or crops such as orchards that do not present
a uniform closed canopy.
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