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Supraglacial meltwater lakes on thewestern Greenland Ice Sheet (GrIS) are critical components of its surface hy-
drology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are
limited by the availability of in situmeasurements of water depth, which in turn also limits the assessment of re-
motely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements,
methods relying upon in situ data are generally restricted to small areas and thus their application to large-
scale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake vol-
umes across a relatively large area (1250 km2) of west Greenland's ablation region using data acquired by the
WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution.
We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single-
channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrat-
ed by usingWV-2multispectral imagery acquired early in themelt season and depth measurements from a high
resolutionWV-2 DEM over the same lake basins when devoid of water. The calibratedmodels are then validated
with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements
recorded in WV-2's blue (450–510 nm), green (510–580 nm), and red (630–690 nm) bands and dual-channel
modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean-
squared deviation of 0.4 m (relative to post-drainage DEMs), and an average volumetric error of b1%. The ap-
proach outlined in this study – image-based calibration of depth-retrieval models – significantly improves
spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The acceleration of mass loss from the Greenland Ice Sheet (GrIS)
over the last two decades is of great significance when considering its
potential contribution to sea level rise (Wouters, Chambers, &
Schrama, 2008; van den Broeke et al., 2009; Schrama & Wouters,
2011; Rignot, Velicogna, van den Broeke, Monaghan, & Lenaerts, 2011;
Shepherd et al., 2012). Accurate projections of Greenland's contribution
to sea level rise require an improved understanding of ice dynamic re-
sponses to hydrologic processes, which is currently lacking
(Bartholomew et al., 2012; Bartholomew et al., 2011; Das et al., 2008;
Hoffman, Catania, Neumann, Andrews, & Rumrill, 2011; Palmer,
Shepherd, Nienow, & Joughin, 2011; Zwally et al., 2002; Phillips,
r Research in Environmental
Rajaram, Colgan, Steffen, & Abdalati, 2013; Tedesco et al. 2013a).
Supraglacial lakes and streams play a crucial role in the ice sheet's hy-
drological system by storing large quantities of meltwater, which can
promote hydrofracturing events (i.e. propagation of water-filled cracks
to the base of the ice sheet). A sudden influx ofmeltwater to the ice-bed
interface, as a result of hydrofracturing events, can increase basal water
pressures and therefore overwhelm existing drainage systems, leading
to pronounced yet short-lived enhancements of ice flow (Das et al.,
2008; Catania, Neumann, & Price, 2008; Hoffman et al., 2011; Selmes,
Murray, & James, 2011; Selmes, Murray, & James, 2013). This process,
however, is largely controlled by the rate of meltwater delivery to the
subglacial environment. Slow vs. rapid drainage events appear to im-
pact ice dynamics differently (Tedesco et al., 2013b; Stevens et al.,
2015). Thus, to advance the coupling between hydrological and ice dy-
namics models, it is important to quantify how much meltwater is
stored on the ice sheet in supraglacial lakes and ponds, how much
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drains from the ice sheet surface through supraglacial streams and riv-
ers, and how much drains into the ice sheet through crevasses and
moulins (Smith et al., 2015). Making assessments of water volumes,
however, is quite challenging, as it requires knowledge of bathymetry
over supraglacial water bodies, which is very difficult to measure espe-
cially over large areas. Given the distribution of supraglacial lakes across
large areas of the ice sheet, data from spaceborne optical sensors offer
great potential for this purpose.

The fundamental concept behind spaceborne bathymetry is to build
depth-reflectance relationships in order to isolate the effects of depth,
water column optical properties, and bottom albedo on measured re-
flectance. Several physically-based and empirical passive remote sens-
ing techniques have been used to derive bathymetric information over
supraglacial lakes using the Moderate Resolution Imaging Spectro-
radiometer (MODIS), the Advanced Spaceborne Thermal Emission and
reflection Radiometer (ASTER), Landsat 7, Landsat 8, or WorldView-2
(WV-2) measurements (Sneed & Hamilton, 2007; McMillan, Nienow,
Shepherd, Benham & Sole, 2007a; Box & Ski, 2007; Georgiou,
Shepherd, McMillan & Nienow, 2009; Tedesco & Steiner, 2011a,
2011b; Legleiter, Tedesco, Smith, Behar & Overstreet, 2014; Banwell
et al., 2014; Pope et al., 2016). Though providing valuable insight into
supraglacial bathymetry, previous efforts have been hindered by the
paucity of co-located remote sensing and in situ observations of water
depth and spectral reflectance. Most of the techniques reported in the
literature rely solely upon sparse point measurements to calibrate re-
flectance to depth, or to validate estimated water depths (e.g. Tedesco
& Steiner, 2011a, 2011b; Legleiter et al., 2014). Therefore these studies
were confined to small areas and to a limited number of lakes out of ne-
cessity. Furthermore, some of these techniques have been applied
across large portions of the ablation region, despite not being validated
at large spatial scales (e.g. Fitzpatrick et al., 2014; Arnold, Banwell &
Willis, 2014).
Fig. 1. (a) Enhanced true-color compositemosaic ofWV-2 images acquired over the primary stu
1.5 km2. (b) The enlarged boxes showWV-2 snapshots of a lake pre-drainage on June 12, 2011 a
(For interpretation of the references to color in this figure legend, the reader is referred to the
The main goal of our study is to explore the capability of the WV-2
sensor in retrieving validated supraglacial lake depths over large areas
that are independent from in situ measurements. Although this study
primarily focuses on the use of WV-2 measurements, we also estimate
lake depths from data collected by Landsat 7's Enhanced ThematicMap-
per (ETM+). Given the vast archive of Landsat 7 imagery, developing
models for the ETM+ sensor will be useful for expanding lake volumes
assessments, which are required for large-scale studies of ice sheet sur-
face hydrology.
2. Study area and data description

The primary study area (50 km × 25 km) is located in the ablation
region of the GrIS, centered at 67° 16′ 33″ N, 49° 35′ 15″Wand approx-
imately 1200m above sea level (a.s.l) (Fig. 1), over which imagery from
WV-2 and Landsat 7 ETM+ sensors was available. We used two WV-2
multispectral images (~2 m resolution) covering the area from early
in the melt season (June 12, 2011) and six stereo panchromatic WV-2
pairs (~0.5 m resolution) over the same area at the end of themelt sea-
son (August 30, 2011).WV-2 instrument acquires data in eight spectral
bands, namely coastal blue (400–450 nm), blue (450–510 nm), green
(510–580 nm), yellow (585–625 nm), red (630–690 nm), red edge
(705–745 nm), Near InfradRed-1 (770–895 nm), and Near InfraRed-2
(860–1040 nm). However, the multispectral WV-2 images over our
study area were acquired with just four of the 8 available spectral
bands, notably blue, green, red, and Near InfraRed-1.

The Landsat 7 image over the study site was acquired on the same
day as theWV-2 scenes (within ~1 h). Of the total twenty-two lakes vis-
ible in Fig. 1, we usedmeasurements over fourteen large lakes forwhich
we were able to acquire stereo image pairs following their drainage
later in the season.
dy area. Visible in the composite are twenty-two large lakeswith an average areal extent of
nd (c) post-drainage on August 30, 2011 included in the black box shown in the left panel.
web version of this article.)



Table 1
Parameters for and statistics on lake depth retrieval using a physically-based single-chan-
nel technique (Eq. (2)). Calibration datasets based onWV-2 and ETM+ imagery consisted
of nWV-2 = 430,899 and nL7 = 4689 depth-reflectance pairs, respectively.

Central
wavelength
λc (nm)

Lake bed
albedo
(Ad)

Attenuation
coefficient (g)
(m−1)

Reflectance of
optically-deep
water (R∞)

R2 Std.
dev.
(m)

WorldView-2 calibration dataset
Blue: 480 0.59 0.16 0.14 0.72 0.59
Green: 545 0.52 0.28 0.12 0.77 0.48
Red: 660 0.28 0.73 0.03 0.71 0.49
Landsat 7 ETM+ calibration dataset
Blue: 485 0.48 0.16 0.07 0.81 0.57
Green: 560 0.40 0.29 0.05 0.81 0.53
Red: 660 0.19 0.69 0.03 0.70 0.76
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The second study site is a lake (0.85 kmacross) located at 69° 36′ 42″
N and 49° 30′ 10″S in west Greenland (Fig. 2), over which concurrent in
situ measurements of depth (ranging from 1 to 4.6 m) and spectral re-
flectance (450–1050 nm) were available (1 m spatial resolution,
0.3 nm spectral resolution) (Tedesco & Steiner, 2011a, 2011b). Data
(n = 2226) were collected by a remotely-controlled boat, which was
equipped with a GPS/sonar, an above-surface irradiance sensor, a
below-surface downward looking radiance sensor, a spectrometer,
and a microcomputer. The uncertainty in depth measurements was es-
timated to be on the order of 0.2–0.3 m (Tedesco & Steiner, 2011a,
2011b).We used in situmeasurement over this second study site to fur-
ther assess the capability of WV-2 spectral bands in retrieving
supraglacial lake depths.

3. Methodology

We calibrated single- and dual-channel bathymetric models by uti-
lizing water reflectance over supraglacial lakes captured by the WV-2
and Landsat 7 ETM+ sensors early in the melt season and depth mea-
surements derived from a high resolution WV-2 DEM over the same
lake basins when drained at the end of the melt season. The following
provides a detailed description of the methodology used in this study.

3.1. Image pre-processing

Bathymetricmodeling from satellite imagery requires an accurate sur-
face reflectance retrieval, necessitating both geometric and radiometric
correction of the satellite scenes. Geometrically-corrected WV-2 images,
have a geolocation accuracy of better than 3.5 m horizontal 90% circular
error of probability (DigitalGlobe, 2014). For atmospheric correction, we
used the MODerate resolution Transmission (MODTRAN5) radiative
transfer code to model transmittance and remove path radiance (Berke,
2006). The MODTRAN inputs of total column ozone (308.2 Dobson
units) and water vapor (0.74 g cm−2) were derived from the MODIS
MOD07 atmospheric product (Menzel et al., 2002). The MODIS overpass
selectedwaswithin one hour of theWV-2 scene acquisition, had viewing
zenith angles b30°, and did not have any aberrant Quality Assurance and
Quality Control flags. Additional MODTRAN inputs such as acquisition
time, location, and viewing geometry were set to match those of the
WV-2 and Landsat 7 sensors at image acquisition. The MODTRAN output
was convolved (Schläpfer & Nieke, 2005) using the spectral response
Fig. 2. True color composite of a WV-2 scene showing the second study area, situated at
69° 36′ 42″ N and 49° 30′ 10″ S. Contemporaneous in-situ measurements of spectral
reflectance and depth were collected by a remotely controlled boat (Tedesco & Steiner,
2011a, 2011b), which was deployed on 2, 3, and 5 July 2010.
functions of WV-2 (Padwick, 2010) and Landsat (Flood, 2014). The
convolved output for path radiance and transmittance was used to
atmospherically correct the sensor observed radiance to surface-leaving
radiance, ultimately yielding surface reflectance suitable for bathymetric
modeling.

3.2. Delineation of supraglacial lakes in WorldView-2 and Landsat 7
imagery

To isolate supraglacial lake pixels in WV-2 scenes, we used the en-
hanced Normalized DifferenceWater Index (NDWIenhanced) method de-
veloped by Yang and Smith (2013). Given the relatively strong contrast
between water and ice in the red band (630–690 nm), and the high
spectral reflectance of water in the blue band (450–510 nm), NDWI
classifies the image into “water” and “non-water” regions using a
threshold based on Eq. (1).

NDWIenhanced ¼ Blue−Red
Blueþ Red

ð1Þ

The choice of threshold can be adjusted to identify lakes, streams or
slush. In this study, we only used reflectances recorded over lakes to cal-
ibratemodels since lakes span a broader range of depths as compared to
streams and rivers. To calculate a threshold suitable for water detection,
we averaged NDWIenhanced values over thousands of randomly selected
lake pixels of variable depths. The selected threshold (0.23)was suitable
for extracting lake pixels; however, some supraglacial stream pixels
were misclassified as lakes. To better delineate only lake boundaries,
we used the opening morphological operator. This process first erodes
the classified features in a binary mask and then dilates them according
to the structuring element (kernel). Small narrow features, such as
streams, were removed from the results, while the large lakes remained
intact. We followed a similar approach to identify lake pixels in the
Landsat 7 scene of our study site.

3.3. Digital depth model (DDM) generation from WV-2 stereo imagery

We created a Digital Elevation Model (DEM) from overlapping pairs
of high-resolution (50 cm)WV-2 panchromatic stereo images acquired
over our study area (Fig. 1), which represented surface topography at
the end of the 2011 melt season. The DEM, gridded at 4 m resolution,
was constructed based on satellite positioning parameters (Rational
Table 2
Parameters for and statistics on lake depth retrieval using an empirical single-channel
technique (Eq. (3)) and WV-2 calibration dataset (n = 430,899).

λc (nm) (∝0) (∝1) (∝2) R2 Std. dev. (m)

Blue: 480 −7.48 0.16 9.82 0.72 0.61
Green: 545 −2.96 0.08 4.88 0.76 0.52
Red: 660 −0.42 0.03 1.34 0.70 0.48



Table 3
Sensitivity of derived depth to a 1% change in single-channel model (Eq. (2)) parameters
for WV-2's blue, green, and red spectral channels. These values are averaged over a possi-
ble range of water reflectances in each spectral channel.

λ (nm) Error (m) (1%ΔAd) Error (m) (1%Δg) Error (m) (1%ΔR∞)

Blue (480) 0.08 0.09 0.02
Green (545) 0.05 0.05 0.01
Red (660) 0.02 0.01 0.00

297M.S. Moussavi et al. / Remote Sensing of Environment 183 (2016) 294–303
Polynomial Coefficients) using the Leica Photogrammetry Suite Module
of ERDAS® IMAGINE software. The absolute vertical accuracy of the de-
rived DEM products is b5.0mwith submeter relative vertical precision,
which is estimated to bewithin 0.15–0.3m (Mitchell, 2010; Aguilar, del
Mar Saldana, & Aguilar, 2014;Willis, Herried, Bevis, & Bell, 2015; Shean
et al., 2016). Based on lake boundaries (see Section 3.1), we averaged
the DEM-derived surface elevations over lake shoreline pixels and
subtracted the shoreline elevation from lake floor elevations to produce
Digital Depth Models (DDMs) for individual lakes. We found the eleva-
tions of lake shoreline pixels to be constant within ±0.30 m, which
combines DEM vertical precision and the horizontal uncertainty of
lake boundaries. Using the resulting DDMs and lake spectral reflec-
tances collected by the WV-2 sensor (see Section 4.), we produced a
depth-reflectance dataset consisting of nWV-2 = 710,253 measurement
pairs (i.e. measurements of both lake depth and reflectance). To build a
depth-reflectance dataset based on Landsat 7 ETM+ imagery, we
resampled the DDMs to 30 m resolution using bi-linear interpolation,
resulting in 7676 depth-reflectancemeasurement pairs over our prima-
ry study site.

3.4. Spectrally-based depth-retrieval

To establish depth-reflectance relationships, we employed three
spectrally-basedmodels that are widely used in the literature. These in-
cluded physically-based (Philpot, 1989; Sneed & Hamilton, 2007), em-
pirical single-channel models (Box & Ski, 2007), and an empirical
dual-channel model (Legleiter et al., 2014). The following provides de-
scriptions for each of these bathymetric models, and how we applied
them.

3.4.1. Physically-based single-channel model
Irradiance passing through a water column is attenuated exponen-

tially with depth, due to absorption and scattering processes (e.g.
Swinehart, 1962). Philpot (1989) derived an expression to determine
water depth from passive optical data, which is described as

z ¼ g−1 ln Ad−R∞ð Þ− ln Rw−R∞ð Þ½ � ð2Þ
Fig. 3. Density plots of depth-reflectance observations for three WV-2 channels (n = 430,899
(Eq. (2)). The density values were defined based on a 2D histogram with a pixel size of 0.035
(λc=480 nm), b) green channel (λc=545 nm), and c) red channel (λc=660 nm). (For in
web version of this article.)
where Adis the bottomor substrate albedo (reflectance), R∞ is the reflec-
tance for optically deep water (N40 m), Rw is the observed water-
leaving reflectance, and z is water depth. The quantity g is a two-way at-
tenuation coefficient that accounts for losses in both upward and down-
ward directions including absorption and scattering. Once the three
model parameters (Ad , g , R∞) have been determined, Eq. (2) provides
a means of retrieving depth from measured surface reflectance.

Sneed and Hamilton (2007) proposed an algorithm for finding ap-
propriate values for model parameters based on multispectral ASTER
data. While their approach offers valuable insight into space-based ba-
thymetry, it has limited applicability for WV-2 because it requires im-
ages covering both ice sheet margin and ice-free ocean (R∞ is
estimated based on the reflectance of deep ocean water far from the
coast). Moreover, it relies on several assumptions about the optical
properties of water and ice, which may introduce significant errors to
depth estimation. Based on depth-reflectance datasets previously de-
veloped for theWV-2 and ETM+ sensors (Section 3.3), threemodel pa-
rameters in Eq. (2) (Ad , g , R∞) were derived by solving a system of
nonlinear equations (based on Eq. (2)) through Levenberg-Marquardt
least-squared regression (Markwardt, 2009).

3.4.2. Empirical single-channel model
Weextended our analysis to calibrate the depth-reflectance function

(Eq. 3) proposed byBox and Ski (2007), inwhichMODIS reflectance and
in situ depth measurements of two supraglacial lakes were coupled to
develop a depth-retrieval model. They approximated the observed
depth-reflectance scatter by a least-square fit of the form:

D ¼ ∝0 Rþ ∝1ð Þ−1 þ ∝2 ð3Þ

where D is the lake depth and R is MODIS band 1 (620–670 nm) reflec-
tance. We derived the three model parameters (∝0, ∝1, ∝2) through re-
gressions of depth against reflectance according to Eq. (3).

3.4.3. Dual-channel model
The logarithm of the ratio of reflectances recorded in two spectral

channels is relatively constant across variable bottom types, as changes
in bottom reflectance affect both bands similarly (Legleiter et al., 2009).
Under appropriate conditions (as summarized by Legleiter et al.

(2009)), the radiometric quantity defined by this ratio (X ¼ ln ½Rwðλ1Þ
Rwðλ2Þ�,

where Rw(λi) is lake reflectance recorded in a given spectral channel)
can be assumed to be quadratically related to depth (D):

D ¼ aX2 þ bX þ c ð4Þ

Following a method proposed by Legleiter et al. (2009), namely Op-
timal Band Ratio Analysis (OBRA), we found the most appropriate
). The dashed lines represent the best fits for the physically-based single-channel model
m by 0.003 in the x (depth) and y (reflectance) directions, respectively. a) Blue channel
terpretation of the references to color in this figure legend, the reader is referred to the



Fig. 6. SimulatedWV-2 reflectances (bands 1–6) vs. sonar-derived lake depth. The curves
represent the best exponentialfits according to thephysically-based single-channelmodel
(Eq. (2)).

Fig. 4. Changes in depth (z) per 1% change in the parameter g in the single-channel model
for WV-2's red, green, and blue channels as a function of water reflectance. Means and
standard deviations are shown from the Monte Carlo simulation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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bathymetric method by finding the pair of wavelengths that yields the
highest R2 among regressions ofD on X , according to Eq. (4), for all pos-
sible band combinations.

4. Results and discussion

4.1. Calibration of spectrally-based depth retrievalmodels from satellite im-
age data

Calibration relationshipswere established based on a random subset
of our depth-reflectance dataset (i.e. data from a random group of lakes
(seven lakes), which included the deepest lake in the study area), re-
ferred to as the calibration dataset hereafter. Calibration datasets
based on WV-2 and L7 ETM+ imagery consisted of nWV-2 = 430,899,
and nL7 = 4605 measurement pairs, respectively. We used the remain-
ing data (i.e. data from seven other lakes not used in the calibration
step), referred to as the validation dataset, to independently assess the
accuracy of the spectrally-retrieved depths.

4.1.1. Single-channel model calibration
Tables 1 and 2 provide a summary of the retrieved parameters for

physically-based and empirical single-channel models along with their
corresponding statistics.

The applicability of depth-reflectance relationships is limited by a
depth threshold, beyondwhich the increase in depth no longer reduces
spectral reflectance. Since the lake depths in our study area were b7 m
we were unable to determine cut-offs for blue and green channels.
However, for red channel, the absorption of light at depths N5 m ap-
peared to be too strong to have any further effect on reflectance (Fig.
3). As can be noted from Tables 1 and 2, the physical and empirical
models have similar statistical performances in capturing variations of
Fig. 5.Density plots of depth (d) versus ðX ¼ ln ½Rðλ1Þ
Rðλ2Þ�Þ relationships based onWV-2 calibration

b) blue & red ratio transform, and c) green & red ratio transform. (For interpretation of the refer
reflectance with depth. Using either technique, however, WV-2's
green and red band data would be most suitable for deriving lake
depths, in terms of accuracy and sensitivity to water depths. Analysis
of the single-channel method based on the ETM+ dataset resulted in
similar findings, although we note a discrepancy between retrieved
lake bed albedo and optically-deep water reflectances based on WV-2
and L7 images (Table 1). This discrepancy is most likely due to different
viewing geometries for the two sensors. The Landsat image was collect-
ed from a downward looking geometry, while theWV-2 scene was col-
lectedwith15° look zenith and a 45° sun zenith, and azimuths thatwere
complimentary. Therefore, therewill bemore surface reflectance visible
to WV-2 than to Landsat. Similar to WV-2, L7's blue and green bands
performed similarly well (R2 = 0.81, see Table 1). Again, as expected,
L7's red band, while producing accurate results (R2 = 0.70), showed
sensitivity to lake depths up to 5 m.

We compared numerically-derived lake bed albedos (Ad) (Table 1)
to those obtained by averaging reflectances over lake shorelines. We
found that mean lake margin reflectances were consistently higher
than optimized albedos by 5–10%, which directly translates into an av-
erage depth underestimation of ~15–25%, across various wavelengths
(see Table 3). Therefore, based on our analysis, it does not appear to
be appropriate to assume similar reflective properties between central
lake substrate and shallow lake edges. Tedesco et al. (2012) speculated
that different ablation rates between ice exposed at the bottom of a lake
and that around a lake edge could be responsible for their different re-
flective properties, especially for lakes with longer lifetimes.

We compared optimized attenuation coefficients (g) (Table 1) to
theoretical (pure water) values from Pope and Fry (1997) and Smith
and Baker (1981) and found that using laboratory values leads to
dataset (n= 430,899) and dual-channelmethod (Eq. (4)). a) Blue & green ratio transform,

ences to color in this figure legend, the reader is referred to theweb version of this article.)



Fig. 7. Success of quadratic optimal band ratio analysis for WV-2 band pairs simulated by
in situ spectra (Eq. (4)).
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depth overestimation by 80% and 60% in blue and green channels, re-
spectively, and depth underestimation by 6% in the red channel. Such
discrepancies between optimized and theoretical values could be indic-
ative of a higher concentration of suspended or dissolved matter in
supraglacial water than generally assumed. Therefore, for WV-2 we
cannot simply rely on theoretical values of freshwater absorption and
scattering to fully represent attenuation conditions in meltwater lakes.
However, Pope et al. (2016) were able to successfully retrieve
supraglacial lake depths using lab-measured values with Landsat 8
data to an accuracy of 0 ± 1.6 m.

To address the sensitivity of the non-linear single-channel model to
uncertainties in eachmodel parameter,we ranMonte-Carlo simulations
against each of the model parameters used in the analysis (Ad, g, R∞),
with N = 1000 samples derived from normal distributions of each pa-
rameter, providing 109 model samples per reflectance value (Rw) for
each parameter and each channel. The parameter distributions (mean
and standard deviation) are noted in Table 1. Each parameterwas isolat-
ed independently to assess the sensitivity of themodel to small changes
in that parameter across a range of reflectances at each wavelength.

Lake depths derived from the single-channel model were least sen-
sitive to uncertainties in model parameters (Ad, g, R∞) when using the
red channel, more sensitive for the green channel, and most sensitive
with the blue channel (Table 3), thus making red channel reflectances
most suitable for accurate lake depth retrieval. This finding is consistent
with the validation results in this paper (see Section 4.3.1). The simula-
tion results indicate consistent model sensitivity to Ad and R∞ across all
reflectance values for a specific channel; however, with respect to un-
certainties introduced by the parameter “g”, results showed a strong de-
pendence on the magnitude of reflectance (Rw,) as noted in Fig. 4. A 1%
Fig. 8. 2D histograms (density plots) of spectrally-retrieved depths using dual-channel techniqu
ratio transform, b) blue & red ratio transform, and c) green & red ratio transform. (For interpreta
of this article.)
uncertainty in “g” causes the largest error in depth at the lowest reflec-
tance values (deeper areas) at each wavelength, progressing to near-
zero at brighter pixels (shallower areas).
4.1.2. Dual-channel model calibration
Weoptimized the dual-channelmodel (Eq. (4)) for three band com-

binations using quadratic regression. These included ratio-transforms
based on reflectances from blue and green, blue and red, and green
and red channels of WV-2 and Landsat 7 ETM+ sensors. Assessments
of depth and band-ratio-derived quantity suggested moderately-
strong to strong relations, with R2 ranging from 0.67 to 0.81 (Fig. 5).
As seen in Fig. 5, coupling of WV-2's blue and green wavelengths, as
compared to ratios using the red band, appears to most accurately cap-
ture variations of X with respect to (D) depth (R2=0.81), particularly
over depths N5 m. The blue/red and green/red ratios lose sensitivity to
depth changes at approximately X N 2.0 and 1.6 respectively. Therefore,
inferring bathymetry using WV-2's red band, either directly or com-
bined with the information in other spectral channels, will likely pro-
duce accurate results only for lake depths up to 5 m (Figs. 3 and 5).
Similarly, OBRA analyses of ETM+ image spectra indicated optimal
depth-retrieval based on blue and green measurements with an R2=
0.84 and standard deviation of 0.53 m (d=8.41 X2+1.4 X−0.017).
4.2. Analysis of in situ depth-reflectance data

Given the availability of only 4-bandWV-2 imagery over our prima-
ry study site (with three of the four bands being appropriate for lake
depth analysis, namely blue, green, and red bands),we performed a the-
oretical simulation of WV-2 image spectra using in situ data over our
second study site (Fig. 2), to determineoptimal spectral channels for ba-
thymetry for cases in which 8-band imagery is available. Using in situ
measurements of depth and reflectance (Tedesco & Steiner, 2011a,
2011b), we simulated WV-2's signal by convolving the field spectra
(n = 2226) with WV-2's spectral response function according to:

rnb ¼

Z ∞

0
r λð ÞR λð Þdλ

Z ∞

0
R λð Þdλ

ð5Þ

where rnb is the narrowband reflectance, r(λ) is the spectral reflectance,
R(λ) is the relative spectral response, and λ is wavelength (Pope et al.,
2016). Convolved spectra and in situ depth measurements were then
regressed according to the physically-based single-channel and dual-
channel methods (see Eqs. (2) and (4)), results of which are summa-
rized in Sections 4.2.1. and 4.2.2.
e (Eq. (4)) vs. measured depths over the validation dataset (n= 279,354) a) blue & green
tion of the references to color in thisfigure legend, the reader is referred to theweb version



Table 4
Parameters for and statistics on lake depth retrieval (Eq. (2)) based on simulatedWV-2 re-
flectances (bands 1–6). Mean, standard deviation, and RMSE are all reported in meters.

WV-2 band Spectral range
(nm)

Ad g
(m−1)

R∞ Mean Std.
dev.

RMSE

1 (Coastal blue) 400–450 0.30 0.03 0.045 3.72 12.57 12.60
2 (Blue) 450–510 0.29 0.04 0.000 3.12 3.60 3.49
3 (Green) 510–580 0.27 0.13 0.000 3.00 1.37 0.95
4 (Yellow) 585–625 0.21 0.52 0.004 2.98 1.06 0.36
5 (Red) 630–690 0.16 0.78 0.001 2.97 1.03 0.28
6 (Red edge) 705–745 0.03 2.98 0.000 2.88 0.86 0.41

Fig. 9. Spectrally-retrieved depths based on WV-2's blue and green measurements vs.
those obtained by Landsat 7's blue and green spectral reflectances (dual-channel
method). As compared to WV-2, ETM+ results underestimated volume by 4%. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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4.2.1. Physically-based single-channel model
Our theoretical analysis based on simulated WV-2 signal in 6 spec-

tral channels (WV-2 bands 1–6) indicate that WV-2's green, yellow,
and red channels have the highest potential for retrieving lake depth
(see Fig. 6 and Table 4). These bands show the strongest relationship be-
tween estimated and measured depth, with an RMSE b 1 m. As can be
noted in Fig. 6, the red edge channel is unsuitable for lake depth analy-
sis, due to the strong attenuation rate of radiationwith depth in this part
of the spectrum (705–745 nm). These findings reflect theoretical per-
formances based on regressions of simulated WV-2 spectra against
sonar-derived depths, which ranged from 1 to 4.6m (Tedesco & Steiner,
2012). Green band data should be useful for depths up to 10–12 m,
given the trend of our analysis. While coastal blue and blue channels
might be able to map water depths of several 10s of meters, no
supraglacial lakes on the GrIS or Antarctica are known to have depths
of this magnitude.

We observed a large discrepancy between the parameters optimized
using image spectra and those derived based on field spectra (see
Tables 1 and 4). The simulated spectra and in situ depth measurements
do not show the strong exponential relationship that image-derived
data does (calibration dataset); the spread of the reflectance values is
greater in the in situ data than in the image-derived data (see Figs. 3
and 6). It is possible that highly variable bottom albedo could have led
to the spread of the in situ data. This variability would have been cap-
tured by the small footprint of the field measurements but smoothed
out by the ~2 m pixels of WV-2. In addition, there are two orders of
magnitude fewer in situ data points upon which to build a relationship.
As a result, we do not recommend the coefficients reported in Table 4,
especially those for coastal blue and blue bands, to be used for further
studies. Nonetheless, conclusions in terms of optimal bands for bathym-
etry are expected to be robust.

4.2.2. Dual-channel model
WeconductedOBRA analyses based on simulatedWV-2 image spec-

tra and in situ measured water depths, according to Eq. (4). The out-
comes are displayed in Fig. 7 and Table 5. From this simulation
excercise, it appears that combinations of WV-2 green & red, yellow &
red, and green & yellow have the highest potential for retrieving lake
depths. Other combinations also perform quite well, as measured by
both R2 and RMSE (see Table 5). These best-performing band combina-
tions (see Fig. 7) are quite similar to those presented by Legleiter et al.
(2014). Broadly, band combinations appear successful when in some-
what similar wavelengths in the visible portion of the spectrum, espe-
cially in the yellow and red wavelengths. As expected, the
combination of near infrared bands, however, is very unsuccessful,
given the strong absorption by water at those wavelengths. These re-
sults are based on sonar-derived lake depth measurements of up to
4.6 m (Tedesco & Steiner, 2011a, 2011b). Whether or not these results
are applicable to depths beyond this range requires further
investigation.

4.3. Validation of supraglacial lake bathymetry

The accuracy of spaceborne supraglacial bathymetry using our ap-
proach is influenced by many uncertainties including errors associated
with classification, co-location, atmospheric correction, andDEMgener-
ation. In addition to these sources of uncertainty, a potential increase in
lake depth over the observation period – i.e. length of time between
multispectral and stereo image acquisition, which was shorter than
3 months for this study – could introduce further errors in measured
post-drainage depths. This would result from lake-bottom ablation
rates, which are observed to be up to 1.35× greater than the surround-
ing bare ice (Tedesco et al. 2012).

Based on the validation dataset (see Section 4.1), Table 6 summa-
rizes the statistical performance of the different models in terms of
four measures quantifying the difference between the spectrally-
derived and the DDM-derived depths: mean error, RMSE, R2, and per-
cent volumetric error.

4.3.1. Validation of depth-retrieval models
Assessments of depth estimates from physically-based and empiri-

cal single-channel models suggest strong statistical agreement with
DDM-derived depths (average R2 = 0.9). Overall, the depth estimates
from the physically-based model (Eq. (2)) compare favorably to those
obtained by the empirical model (Eq. (3)) (see Table 6). Using either
technique, however, red channel measurements yield the least biased
and most accurate depth estimates (mean error = 0.05 m, RMSE =
0.40 m), although it is important to note that the depths in the valida-
tion dataset were only up to ~4.5 m. Considering WV-2's red wave-
length's reduced sensitivity to depth beyond 5 m, bathymetry over
deeper lakes will be better resolved using WV-2's green band data
(Fig. 3(b), Table 6).

Evaluation of results derived from the dual-channel model based on
three band ratios (blue and green, blue and red, and green and red)
pointed to its capability in retrieving depths with a high degree of accu-
racy (mean error b 1% of mean depth) and precision (RMSE = 0.4 m,
~b15% of mean depth). Comparison between estimated and measured
lake volumes revealed an average (absolute) volumetric error of b1%
(Table 6).

Overall, the performance of the dual-channel model, for all three
band combinations, was better than for any single-channel model.
This is likely due to lower sensitivity of the dual-channelmethod to sub-
strate heterogeneity when compared to the single-channel technique.
While the image-derived radiometric quantity in the dual-channel
method tends to be only slightly sensitive to changes in substrate



Table 5
Parameters for and statistics on lake depth retrieval using quadratic optimal band ratio
analysis of WV-2 band pairs as simulated from in situ spectra (Eq. (4)).

Band ratio a b c R2 RMSE (m)

Green & red (3 & 5) 0.16 0.93 −0.29 0.97 0.16
Yellow & red (4 & 5) 1.06 1.57 −0.22 0.97 0.16
Green & yellow (3 & 4) 0.38 2.06 −0.35 0.97 0.17
Blue & red (2 & 5) 0.08 0.99 −0.44 0.96 0.19
Coastal blue & red (1 & 5) 0.07 0.96 −0.42 0.96 0.20
Blue & yellow (2 & 4) 0.06 2.00 −0.53 0.95 0.21
Coastal blue & yellow (1 & 4) 0.06 1.85 −0.48 0.94 0.23
Blue & green (2 & 3) −5.41 11.67 −0.57 0.85 0.39
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reflectance across bottom types (Legleiter et al., 2014), the spectral re-
flectance used in the single-channel methods has significant variability,
especially going from bare ice to dark cryoconite holes (Tedesco &
Steiner, 2011a, 2011b; Sneed and Hamilton, 2011).

Coupling of blue and green bands appears tomost accurately capture
the variations across a broader range of depths (Fig. 8), confirming con-
clusions from the calibration portion of this study. However, in the 0–
1 m depth range, blue and green ratio exhibited the highest bias
(0.1 m) when compared to the blue and red and green and red ratio
transforms (Fig. 8). This biasmay be partially due to path radiance resid-
uals (remaining atmospheric effects). Our results indicate that over
shallowwater bodies (0–1m), usingWV-2's red band in the denomina-
tor of the dual-channel model (i.e. blue and red ratio, green and red
ratio) will produce more accurate results than using the green band in
the denominator. Conversely, over deeper lakes (depths N 5 m) using
the green wavelength in the denominator (i.e. blue and green ratio)
will yield more accurate depth and thus volume estimates, than using
the red wavelength in the denominator. Lake depths ranging between
1–5 m are resolved similarly well using blue and green, blue and red,
and green and red band ratios. These results are in line with findings
from the analysis of field spectra by Legleiter et al. (2014).

Based onWV-2multispectralmeasurements over our primary study
area (Fig. 1) and depth-retrieval models, we found the maximum lake
depth, area and volume to be 7 m, 3.48 km2 and 0.08 × 10−2 km3 re-
spectively. To estimate the total amount of of meltwater in lakes,
streams, and rivers captured by the WV-2 images (acquired on June
12, 2011), we applied our calibrated depth-retrieval models to areas
of images where water pixels were present. Our analysis indicated
that the total volume of meltwater stored in supraglacial lakes, streams,
and rivers was 0.76 ± 0.01 × 10−2 km3 (~65% of which was contained
in twenty two lakes).

4.3.2. Comparison of WV-2 and Landsat 7 ETM+ lake depth-retrievals
We also compared spectrally-retrieved depths from WV-2 imagery

against those derived from the ETM+ scene of our primary study site
(Fig. 1), using the validation datasets independently developed for
these sensors. These comparisons suggested very strong statistical
agreement with an average R2=0.98 across various single- and dual-
channel methods, an example of which is presented in Fig. 9. Consistent
Table 6
Statistics on lake depth retrieval using single-channel (Eq. (2) and Eq. (3)) and dual-channel (

λ1
c (nm) λ2

c (nm) Mean error (m) RMSE (m)

Single-channel model

Physical Empirical Physical

480 – 0.17 0.11 0.54
545 – 0.10 0.06 0.42
660 – 0.06 0.05 0.35

Dual-channel model
480 545 0.02 0.36
545 660 0.01 0.40
660 660 0.03 0.41
performance ofWV-2 and ETM+ sensors is indicative of ETM+'s capa-
bility to accurately retrieve supraglacial water depths, despite offering
lower spatial, spectral, and radiometric detail compared to the WV-2
sensor. Data loss resulting from Landsat 7's failed Scan Line Corrector
(SLC) remains a limiting factor, because lakes are not imaged in their en-
tirety further from the center line of the image.With higher radiometric
resolution and better Signal-to-Noise ratio levels, the Operational Land
Imager (OLI) on board the Landsat 8 satellite complements and im-
proves upon Landsat 7 ETM+ lake depth retrievals (Pope et al., 2016).

5. Conclusions

In this study, we perform an image-based retrieval of supraglacial
lake depths using established models, completely independent from in
situ data, and make recommendations on optimal spectral channels
for bathymetry based on WV-2 and Landsat 7 ETM+ imagery. To im-
prove upon the limitations of using physical measurements of water
depth to calibrate model parameters, we developed a methodology
that eliminates the need for costlyfield or airborne bathymetric surveys.
To calibrate the depth-retrieval parameters of these models, we used
lake reflectances recorded by the WV-2 and Landsat 7 ETM+ sensors
for filled lakes and coupled them with co-located elevation measure-
ments from a high-resolution post-drainage WV-2 DEM. Our analysis
suggests that, For both the WV-2 and the L7 ETM+ sensor, the optimal
depth-retrieval method depends on the maximum lake depth and its
distribution. Our analysis of 4-bandWV-2 Images showed that for shal-
low lake areas (d b 1 m), the dual-channel model based on the green &
red band ratio yields themost accurate results. All dual-channel models
perform equally well for lake depths between 1 and 5 m. For deeper
lakes (d N 5 m), the blue & green band ratio resolves depths more accu-
rately than other band combinations. Similarly, single-channel models
based on red band data are only accurate for lake depths up to 5 m.
Green band data is best for deeper lakes (N5 m). Our theoretical assess-
ment of 8-band WV-2 imagery indicated that with single-channel
models, the green, yellow, and red channels are most suitable for accu-
rate bathymetry. For dual-channelmodels, band ratios based onWV-2's
green & red, yellow & red, green & yellow spectral channels have the
highest potential for retrieving supraglacial lake depths. These results
are consistent with the findings based on image-data analysis.

Our assessments of single-channel and dual-channel bathymetry
models indicate that, overall, dual-channel models can resolve depths
more accurately than single-channel models. Depths retrieved with
the dual-channel method showed high accuracy (mean error b 1% of
mean depth) and precision (RMSE b 15% of mean depth) across various
band ratios. Moreover, the average error in lake volume estimation
across a ~1250 km2 area was b1%, which is unprecedented for
spaceborne supraglacial bathymetry.

Remote sensing continues to provide valuable tools for monitoring
the areal extent, depths, and thus volumes of supraglacial lakes, the
studies of which are important for understanding ice dynamics and
thermodynamic processes. We have presented a new methodology to
characterize and validate meltwater storage volumes purely based on
Eq. (4)) methods based onWV-2 measurements (validation dataset, n = 279,354).

OP R2 Volume error (%)

Empirical Physical Empirical Physical Empirical

0.64 0.83 0.80 11.46 13.45
0.49 0.92 0.91 5.68 7.03
0.45 0.95 0.91 1.12 4.27

0.99 0.15
0.96 −0.31
0.95 1.62
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remotely-sensed data. This method allows for calibration of lake depths
over both small and large lakes in an extended study area, leading to an
improved representation of supraglacial lake population. For site-
specific studies, calibration of models based on the approach in this
paper (image-based retrieval of model parameters) is strongly pre-
ferred to application of models based on theoretical/estimated values
of lake/water optical properties. Our approach does not rely on images
covering both the ice sheet and the adjacent ice-free ocean regions to
retrieve R∞(reflectance of optically-deep water), which allows using
ice sheet interior imagery from narrow- to moderately-wide-swath in-
struments with medium-to-high spatial resolution (WV-2, ASTER, and
Landsat). Additionally, the method's success in capturing lake margin
depths with high accuracy offers potential to characterize transient
meltwater flow through shallow supraglacial streams and rivers,
which has important implications for understanding ice sheet hydrolo-
gy (Smith et al., 2015). This study demonstrates successful application
of depth-retrieval models over a relatively large area; however, more
data are required to build models for ice sheet-wide estimation of
supraglacial water depths. Given the rapid expansion in the availability
of imagery from high-resolution and stereo sensors for scientific use,
thismethodology represents a significant opportunity to expand our ca-
pability of supraglacial lake volume estimates across Greenland and
other glaciated regions.
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